Contact: Tim Kamp 608-263-0836,
tjk@medicine.wisc.edu
Madison – The promise of stem cells to treat cardiovascular disease may soon be a step closer to clinical application as scientists from three institutions seek to perfect and test three-dimensional “heart patches” in a large animal model – the last big hurdle before trials in human patients.
In theory, the heart patches, engineered tissue composed of the several different types of cells that make up heart muscle, would be implanted to replace diseased or damaged tissue and would perform all the functions of healthy, beating heart muscle.
Using stem cells to treat cardiovascular disease is a grail of regenerative medicine, explains Timothy J. Kamp, a University of Wisconsin-Madison cardiologist and co-director of the UW-Madison Stem Cell and Regenerative Medicine Center. Treating diseased hearts by implanting healthy, lab-grown cells to replace damaged tissue has been an aspiration of stem cell biologists since all-purpose human stem cells were first derived and cultured at UW-Madison in 1998.
Working with teams from the University of Alabama at Birmingham and Duke University in a newly funded $8.6 million consortium, Kamp and his colleagues will seek to devise and seed with the appropriate mix of cells three-dimensional patches that will be used in a pig model, a close approximation in an animal to the human heart. The seven-year study is being funded by the National Institutes of Health.
“The excitement here is we’re moving closer to patient applications,” says Kamp, a professor in the UW School of Medicine and Public Health (SMPH). “We’re at a stage when we need to see how these cells do in a large animal heart attack model. We’ll be making patches of heart muscle that can be applied to these injured areas.”
Other types of cells have been tried for cardiac repair with limited success, Kamp notes, but the advent of embryonic and induced stem cell technologies brings a new precision to the problem: the ability to make in the lab all of the specific cell types that make up heart muscle and that could be more personalized to individual patients.
See full story at: http://news.wisc.edu/stem-