

State of Misconsin 2025 - 2026 LEGISLATURE

LRB-5378/1 KP:emw&wlj

2025 BILL

- 1 AN ACT to create 77.54 (76) and 238.42 of the statutes; relating to: a sales and
- 2 use tax exemption for nuclear fusion technology projects.

Analysis by the Legislative Reference Bureau

This bill creates a sales and use tax exemption for various items, specified in further detail in the bill, used exclusively for a qualified nuclear fusion technology project certified by the Wisconsin Economic Development Corporation. Under the bill, a "qualified nuclear fusion technology project" is a project that has the purpose of undertaking the controlled fusion of atomic nuclei or research thereupon.

Because this bill relates to an exemption from state or local taxes, it may be referred to the Joint Survey Committee on Tax Exemptions for a report to be printed as an appendix to the bill.

For further information see the state and local fiscal estimate, which will be printed as an appendix to this bill.

The people of the state of Wisconsin, represented in senate and assembly, do enact as follows:

- 3 **SECTION 1.** 77.54 (76) of the statutes is created to read:
- 4 77.54 (76) (a) The sales price from the sale of and the storage, use, or other

BILL SECTION 1

- 1 consumption of any of the following used exclusively for a qualified nuclear fusion
- 2 technology project, as defined in s. 238.42 (1), and used solely at the qualified
- 3 nuclear fusion technology project's location:
- 1. Data acquisition, procession, storage, and visualization software and
- 5 hardware.
- 6 2. Ion cyclotron resonance heating systems, radio frequency signal generators,
- 7 tetrodes, coaxial transmission lines, and radio frequency antennae.
- 8 3. Pre-ionization systems, helicon plasma guns and injectors, and electron
- 9 guns.
- 10 4. Ceiling-mounted cranes or lifts.
- 5. Rail systems for vessel movement and alignment.
- 12 6. Cooling tower infrastructure.
- 7. High-voltage power supplies with an output of 1,000 volts or more.
- 8. Electromagnets having a magnetic flux density of 0.1 tesla or more.
- 9. High-temperature superconductors having a critical temperature of 77
- kelvins or above.
- 17 10. Superconductors.
- 18 11. Steady-state lasers having an output of 10 kilowatts or more.
- 19 12. Gyrotrons.
- 20 13. Neutral beam injection systems and subsystems.
- 21 14. Radio frequency transmitters.
- 22 15. Radio frequency transmission lines and antennae.
- 23 16. Waveguides for frequencies exceeding one gigahertz.
- 24 17. Vacuum pumps.

BILL

- 1 18. Cryopumps capable of providing ultimate pressures of 0.001 torr or less.
- 2 19. Vacuum vessels manufactured of stainless steel or a reduced activation
- 3 ferritic-martensitic steel.
- 4 20. Vacuum valves capable of maintaining pressures of 0.000001 torr or less.
- 5 21. Hydrogen isotopic separation systems.
- 6 22. Direct internal recycling systems of the nuclear fusion fuel cycle.
- 7 23. Tritium extraction systems for fusion blankets.
- 8 24. Air detritiation systems.
- 9 25. Water detritiation systems.
- 10 26. Gas recovery systems for sulfur hexafluoride.
- 11 27. Electromagnetic pumps for pumping liquid metals.
- 12 28. Gettering systems.
- 13 29. Motor generators.
- 14 30. Liquid metal flow circuits.
- 15 31. Bubble detectors.
- 16 32. Scintillators.
- 17 33. Personnel dosimeters and other personal protective equipment, including
- high-voltage, laser, and construction personal protective equipment.
- 19 34. Klaxons and alerting systems, including interlock systems.
- 20 35. High-voltage pulsed power supplies.
- 36. High-power energy storage of greater than one megawatt, including
- battery, flywheel, and capacitor systems.
- 23 37. Battery storage systems.
- 24 38. Capacitors and supercapacitors.

LRB-5378/1 KP:emw&wlj

BILL SECTION 1

- 1 39. Switching technologies.
- 2 40. Transformers.
- 3 41. Thermal storage systems.
- 4 42. Materials used to create nuclear energy bioshields and bunkers.
- 5 43. Cryogenic systems, including cryostats.
- 6 44. Construction materials.
- 7 45. Deuterium.
- 8 46. Tritium.
- 9 47. Lead lithium eutectics composed of at least 10 percent and not more than
- 20 percent lithium and of at least 80 percent and not more than 90 percent lead.
- 11 48. Molten salt made from a mixture of lithium fluoride and beryllium
- 12 fluoride and used for fusion blankets.
- 13 49. Lithium enriched to contain 10 percent or more lithium-6 and high-
- 14 chemical-purity natural lithium.
- 15 50. Lithium containing ceramics, including lithium silicate and lithium
- titanate.
- 51. Tungsten, tungsten carbide, and tungsten boride.
- 18 52. First wall usage materials, including premium synthetic graphite,
- molybdenum, titanium-zirconium-molybdenum alloys, and high-entropy alloys.
- 53. Diagnostic window materials, including quartz, sapphire, and diamond.
- 21 54. Helium.
- 55. Boron carbide.
- 56. Lead, pure lead, and other bioshield materials.
- 24 57. Equipment used for measuring and monitoring plasma health and

LRB-5378/1 KP:emw&wlj **SECTION 1**

BILL

24

1	behavior, including Langmuir probes, flux loops, X-ray detectors, neutron detectors
2	broad-spectrum absolute extreme ultraviolet detectors and the data acquisition
3	systems needed to digitize and interpret the output of that equipment.
4	58. Pulsed lasers with a pulse duration of less than one microsecond and an
5	energy greater than 0.1 joule.
6	59. Spectrometers, including polychromators.
7	60. Digitizers that sample 100,000 or more samples per second.
8	61. Residual gas analyzers.
9	62. Multiphysics software.
10	63. Computer-aided design software.
11	64. High-performance computing resources.
12	65. Reduced activation ferritic or martensitic steel.
13	66. Oxide dispersion-strengthened alloys.
14	67. Vanadium alloys.
15	68. Silicon carbide composites.
16	69. Tantalum.
17	70. Concrete.
18	71. Stainless steel.
19	72. Power conditioning, stabilizing, and harmonic filtering hardware.
20	73. Alumina, zirconia, zirconium diboride, and titanium diboride.
21	(b) The sales price from the sale of and the storage, use, or other consumption
22	of an item described in par. (a) sold to a contractor that transfers the item to a
23	qualified nuclear fusion technology project, as defined in s. 238.42 (1), if such an

item becomes a component of the qualified nuclear fusion technology project.

1

 $\mathbf{2}$

3

4

5

6

7

8

9

10

11

12

13

14

15

16

BILL

SECTION 2. 238.42 of the statutes is created to read:

238.42 Nuclear fusion technology projects. (1) DEFINITION. In this section, "qualified nuclear fusion technology project" means a project conducted by a business entity, as defined in s. 13.62 (5), or its affiliate that has the purpose of undertaking the controlled fusion of atomic nuclei or research thereupon, including energy generation, propulsion systems, materials research, medical isotope production, neutron sources, plasma physics research, and any other application making use of fusion reactions or fusion-enabling technologies.

(2) CERTIFICATION. The corporation shall certify a qualified nuclear fusion technology project for purposes of the sales and use tax exemption under s. 77.54 (76). The certification shall identify the business entity undertaking the qualified nuclear fusion technology project. The corporation shall contract with that business entity.

SECTION 3. Effective date.

(1) NUCLEAR FUSION TECHNOLOGY PROJECT EXEMPTION. This act takes effect on the first day of the 3rd month beginning after publication.

17 (END)